Who to send in to try and win the game?

It's the last inning of an important game. Your team is a run down with the bases loaded and two outs. The pitcher is due up, so you'll be sending in a pinch-hitter. There are 2 batters available on the bench. Who should you send in to bat?

Player	Overall
Α	33 for 103
B	45 for 151

It's difficult to compare the two players because the <u>counts</u> are quite different.

To make comparison easier we should convert the <u>counts</u> to <u>percents</u>

Who to send in to try and win the game?

It's the last inning of an important game. Your team is a run down with the bases loaded and two outs. The pitcher is due up, so you'll be sending in a pinch-hitter. There are 2 batters available on the bench. Who should you send in to bat?

Player	Overall	
Α	33 for 103	
B	45 for 151	

A

- <u>15 7 7 2009 10 10 10</u>	ALC: N D	
	- C.	

Player	Overall
Α	33 for 103 (.320)
В	45 for 151 (.298)

B

But what about their performance vs. right and left-handed pitchers?

But what about their performance vs. right and left-handed pitchers?

Player	Overall	vs. LHP	vs. RHP
Α	33 for 103	28 for 81	5 for 22
B	45 for 151	12 for 32	33 for 119

And the averages:

Player	Overall	vs. LHP	vs. RHP
A	33 for 103	28 for 81	5 for 22
	(.320)	(.346)	(.227)
B	45 for 151	12 for 32	33 for 119
	(.298)	(.375)	(.277)

Wait a minute. I thought we were going to send in A to pinch-hit because he had the better average. But this table shows that B has a better average against right and left-handed pitchers! What happened?

Player	Overall	vs. LHP	vs. RHP
Α	33 for 103	28 for 81	5 for 22
	(.320)	(.346)	(.227)
В	45 for 151	12 for 32	33 for 119
	(.298)	(.375)	(.277)

Since the <u>average</u> is also the balance point, we can use the Law of Levers in our explanation.

Mathematically

<u>119(.277) + 32(.375)</u>

151

.298

Simpson's paradox	When averages are taken across different groups, they can appear to
	contradict the overall averages

