Who to send in to try and win the game?

It's the last inning of an important game. Your team is a run down with the bases loaded and two outs. The pitcher is due up, so you'll be sending in a pinch-hitter. There are 2 batters available on the bench. Who should you send in to bat?

Player	Overall
A	33 for 103
B	45 for 151

A
It's difficult to compare the two players because the counts are quite different.
To make comparison easier we should convert the counts to percents

B

Who to send in to try and win the game?

It's the last inning of an important game. Your team is a run down with the bases loaded and two outs. The pitcher is due up, so you'll be sending in a pinch-hitter. There are 2 batters available on the bench. Who should you send in to bat?

Player	Overall
A	33 for 103
B	45 for 151

Averages:

Player	Overall
A	33 for $103(.320)$
B	45 for $151(.298)$

A

B

But what about their performance vs. right and left-handed pitchers?

But what about their performance vs. right and left-handed pitchers?

Player	Overall	vs. LHP	vs. RHP
A	33 for 103	28 for 81	5 for 22
B	45 for 151	12 for 32	33 for 119

And the averages:

Player	Overall	vs. LHP	vs. RHP
\mathbf{A}	33 for 103	28 for 81	5 for 22
	$(.320)$	$(.346)$	$(.227)$
\mathbf{B}	45 for 151	12 for 32	33 for 119
	$(.298)$	$(.375)$	$(.277)$

Wait a minute. I thought we were going to send in A to pinch-hit because he had the better average. But this table shows that B has a better average against right and left-handed pitchers! What happened?

Player	Overall	vs. LHP	vs. RHP
\mathbf{A}	33 for 103	28 for 81	5 for 22
	$(.320)$	$(.346)$	$(.227)$
\mathbf{B}	45 for 151	12 for 32	33 for 119
	$(.298)$	$(.375)$	$(.277)$

Since the _average__ is also the balance point, we can use the Law of Levers in our explanation.

Mathematically

A
$\underline{22(.227)+81(.346)}$
103
. 320

119(.277) + 32(.375)
151
. 298

